
www.elsevier.com/locate/ijforecast

International Journal of Forecasting 20 (2004) 115–129
Recursive modelling of symmetric and asymmetric volatility in the

presence of extreme observations

Hock Guan Nga,*, Michael McAleerb

aDepartment of Accounting and Finance, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
bDepartment of Economics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Abstract

This paper is concerned with recursive estimation, testing and forecasting of the asymmetric volatility of daily returns in

Standard and Poor’s 500 Composite Index and the Nikkei 225 Index in the presence of extreme observations, or significant

spikes in the volatility of daily returns. For each of the two data sets, the empirical analysis increases the sample size up to

12 000 observations recursively to examine the effects of extreme observations on: (i) the Quasi Maximum Likelihood

Estimates (QMLE) of the GARCH(1,1) and asymmetric GJR(1,1) parameters; (ii) the associated asymptotic and robust t-ratios

of the QMLE; (iii) recursive statistical testing of the asymmetry parameter in GJR(1,1); (iv) the sufficient second and fourth

moment conditions for consistency and asymptotic normality, respectively, of the QMLE of GARCH(1,1) and GJR(1,1); and (v)

the forecast performance of the GARCH(1,1) and GJR(1,1) models for periods with significant spikes in volatility and for

periods of relative calm.
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1. Introduction (1986) generalized the ARCH model to GARCH(p,q),
Given the importance of risk in economic and

financial markets, and the use of volatility in evaluat-

ing risks, asymmetric shocks and leverage effects, it is

not surprising that time-varying volatility has become

an active area of research in finance in recent years.

Engle (1982) captured the time-varying nature of

volatility by developing the autoregressive conditional

heteroscedasticity (ARCH(p)) model. Bollerslev
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which has subsequently become the most popular

model of time-varying symmetric volatility in prac-

tice. The GARCH specification has several attractive

features, namely the ability to accommodate key

stylised facts of volatility in financial data, such as

the persistence of volatility and volatility clusters, and

leptokurtic data, as well as mathematical and compu-

tational simplicity. Glosten, Jagannathan and Runkle

(1993) modified the GARCH(p,q) model to GJR(p,q)

by accommodating the asymmetric responses of vol-

atility to positive and negative shocks. The ease of

interpretation and application has also made the

GJR(p,q) model very popular among financial

practitioners.
rs. Published by Elsevier B.V. All rights reserved.
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A number of important structural properties of the

models and the asymptotic theory underlying a variety

of estimation methods have recently been established

for GARCH and GJR. These theoretical developments

provide a solid foundation for applying the various

models in practice (see Li, Ling & McAleer, 2002 for

a survey of recent theoretical results associated with

GARCH models).

Extreme observations and outliers, or significant

spikes in volatility, are commonly observed in high

frequency financial time series. Such observations can

adversely affect the estimates of the parameters and

forecasts of volatility. Questions arise as to how these

aberrant observations should be accommodated in

estimation, testing and forecasting. In this paper, we

investigate the optimal number of observations to be

used from two large data sets that include extreme

observations.

Using the daily returns in Standard and Poor’s

Composite 500 Index (S&P 500) and the Nikkei

225 Index, the paper is concerned with recursive

estimation, testing and forecasting of the symmetric

and asymmetric volatility of daily returns in the

presence of extreme observations. The empirical anal-

ysis increases the sample size recursively up to 12 000

observations in order to examine the effects of ex-

treme observations in the data on: (i) the Quasi

Maximum Likelihood Estimates (QMLE) of the

GARCH(1,1) and asymmetric GJR(1,1) parameters;

(ii) the associated asymptotic and robust t-ratios of the

QMLE of GARCH(1,1) and GJR(1,1); (iii) recursive

statistical testing of the asymmetry parameter in

GJR(1,1); (iv) the sufficient second and fourth mo-

ment conditions for consistency and asymptotic nor-

mality, respectively, of the QMLE of GARCH(1,1)

and GJR(1,1); and (v) the forecast performances of

GARCH(1,1) and GJR(1,1) for periods with signifi-

cant spikes in volatility and for periods of relative

calm.

Several interesting results emerge from the empir-

ical analysis, namely: expanding the sample size

recursively and including an extreme observation does

not necessarily improve the accuracy of predicting

future extreme observations; the parameter estimates

of the GARCH(1,1) and GJR(1,1) processes, their

associated asymptotic and robust t-ratios, the second

and fourth moment regularity conditions, and various

forecast performance measures, are all highly volatile
in small samples, but stabilise when an extreme

observation is included in the estimation period at

sample sizes in excess of 2000; increasing the sample

size recursively beyond an extreme observation is

unnecessary; the robust t-ratios are, in general, dra-

matically superior to their asymptotic counterparts;

the second moment condition is always satisfied in the

case of S&P 500, but not so in the case of Nikkei 225;

if the conditional (or standardised) error is normal, the

fourth moment condition is generally satisfied for

S&P 500 but not for Nikkei 225; if the conditional

error follows a fatter-tailed distribution such as the

tð5Þ distribution, the fourth moment condition is

generally not satisfied; increasing the sample size

recursively does not necessarily lead to the moment

conditions being satisfied; increasing the sample size

recursively does not necessarily lead to improved

forecasts; the GARCH(1,1) and GJR(1,1) models are

superior to the RiskMetrics model in forecasting

volatility; and neither GARCH(1,1) nor GJR(1,1)

dominates the other.

The plan of the paper is as follows. Section 2

presents the structural properties of the GARCH(1,1)

and GJR(1,1) models and the associated asymptotic

theory. Section 3 describes the data. The empirical

estimates and forecasts are analysed in Section 4.

Some concluding remarks are given in Section 5.
2. The symmetric GARCH and asymmetric GJR

models

Both volatility models to be estimated are associ-

ated with a stationary AR(1) conditional means (for

the logarithmic returns of the S&P 500 and Nikkei

225 Indexes) given by:

yt ¼ l þ /yt�1 þ et; j / j< 1 ð1Þ

2.1. GARCH(1,1)

For the GARCH(1,1) model, the conditional vari-

ance of the unconditional shock et is given by:

et ¼ gt
ffiffiffi
h

p
t ð2Þ

ht ¼ x þ ae2t�1 þ bht�1 ð3Þ



H.G. Ng, M. McAleer / International Journal of Forecasting 20 (2004) 115–129 117
where gt is a sequence of normally, independently and

identically distributed random variables with zero

mean and unit variance. Sufficient conditions for ht
to be positive, and hence for the GARCH process to

exist, are that x > 0; az0; and bz0: The ARCH (or a)
effect indicates the short run persistence of shocks,

while the GARCH (or b) effect indicates the contribu-
tion of shocks to long run persistence (namely, a þ b).

Several structural properties have been established

for the GARCH(1,1) process in order to define the

unconditional moments of et . The second moment of

et exists, that is Ee2t < l; if a þ b < 1; which is

sufficient to ensure that the GARCH(1,1) process is

strictly stationary and ergodic (see Bollerslev, 1986;

Ling & Li, 1997). A sufficient condition for the

existence of the fourth moment of et is ka2 þ 2ab þ
b2 < 1 (see Bollerslev, 1986), where k is the condi-

tional fourth moment of gt: Under the assumption of

conditional normality, kuEtðg4t Þ ¼ 3; so that the

condition becomes:

SGðNÞu3a2 þ 2ab þ b2 < 1 ð4Þ

A common alternative assumption is that gt is distrib-
uted according to the t distribution with m > 4 degrees

of freedom, in which case k ¼ 3ðm � 2Þ=ðm � 4Þ; with
3VkV9: In the extreme case m ¼ 5; the condition

becomes:

SGðtÞu9a2 þ 2ab þ b2 < 1 ð5Þ

More generally, Ling and McAleer (2002a) derived

the necessary and sufficient conditions for the exis-

tence of all the moments of the GARCH(p,q) model.

For the GARCH(1,1) model, Nelson (1991)

obtained the necessary and sufficient log-moment

condition for strict stationarity and ergodicity as:

E ln ag2t þ b
� �� �

< 0 ð6Þ

A difficulty in applying the necessary and sufficient

condition in (4) is that it is a function of a random

variable and unknown parameters, and hence needs to

be simulated or estimated. Unlike the second moment

condition, the log-moment condition allows a þ b>1,
in which case Ee2t ¼ l: The condition for a finite

variance of the GARCH(1,1) process is a þ b < 1

and, as given above, the condition for finite fourth
moment under normality is (4). The fourth moment

condition is clearly more stringent than its second

moment counterpart, which in turn is stronger then the

log-moment condition.

In the absence of normality of gt; the parameters

of the GARCH(1,1) model are typically estimated by

the maximum likelihood method to obtain Quasi-

Maximum Likelihood Estimators (QMLE). Ling and

McAleer (2002b) showed that the QMLE for

GARCH(p,q) is consistent if the second moment of

the unconditional shocks is finite. For GARCH(p,q),

Ling and Li (1997) demonstrated that the local

QMLE is asymptotically normal if the fourth mo-

ment of the unconditional shocks is finite, while

Ling and McAleer (2002b) proved that the global

QMLE is asymptotically normal if the sixth moment

is finite.

2.2. GJR(1,1)

For the GARCH model, positive shocks are as-

sumed to have the same effect on conditional volatil-

ity as negative shocks. In order to accommodate

asymmetric behaviour, the GJR(1,1) model incorpo-

rates a stochastic indicator variable It�1 in the condi-

tional variance equation, as follows:

ht ¼ x þ a þ c It�1ð Þ e2t�1 þ bht�1 ð7Þ

where It�1 takes the value 1 when et�1 < 0; and 0

otherwise. The indicator variable differentiates be-

tween positive and negative shocks, so that asymmet-

ric effects in the data are captured by c; with c > 0:
The asymmetric effect, c;measures the contribution of

shocks to both short run persistence, a þ c
2
; and long

run persistence, a þ b þ c
2
:

Ling and McAleer (2002c) established the suffi-

cient conditions for the second moment of et (under
symmetry of the standardised shock) and fourth

moment of et to exist as a þ b þ c
2
< 1 and ka2 þ

2ab þ b2 þ bc þ kac þ kc2

2
< 1; respectively. If it is

assumed that gt is distributed as Nð0; 1Þ; the fourth

moment condition becomes:

SGJRðNÞu3a2 þ 2ab þ b2 þ bc þ 3ac þ 3c2

2

< 1 ð8Þ
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However, if gt is distributed as tð5Þ; then the fourth

moment condition is given as:

SGJRðtÞu9a2 þ 2ab þ b2 þ bc þ 9ac þ 9c2

2
ð9Þ

< 1

These conditions make it clear that the admissible

region of ða; bÞ for second- and fourth-order

stationarity of the asymmetric GJR(1,1) model is

smaller than that for its symmetric GARCH(1,1)

counterpart, as the asymmetry of the model increases

its uncertainty.

Although the regularity conditions for the exis-

tence of moments for the GJR model are now known,

there are as yet no theoretical results regarding the

statistical properties of the model. In practice, it is

assumed that the QMLE are consistent and asymptot-

ically normal.
3. Data

The daily closing values of the S&P 500 Index for

the period 3 January 1950 to 5 May 1998, and of the

Nikkei 225 Index for the period 10 May 1951 to 22

April 1998, were extracted from the Datastream

database. The daily return for each index was calcu-

lated as the ratio of the close-to-close change in the

index to the previous trading day’s close.

These two indexes were chosen for the availability

of daily observations over an extended period. The

sample period for each index was chosen such that

each series has 12 000 observations covering approx-

imately the same time period as the other. The long

sample periods include many significant spikes in the

volatility of each set of daily returns, as well as many

episodes of relative calm. An important date in the

sample period is 19 October 1987 in the USA, or 20

October 1987 in Japan, as this is when the largest

volatility spikes for both series occurred.1 Conse-

quently, this data set offers an invaluable opportunity

to study the effects of extreme observations on the

estimation, testing and forecasting of volatility over an

extended period.
1 We shall henceforth refer to this observation by the US date

of 19 October 1987.
Various subsets of the data are used for estima-

tion, testing and forecasting. In order to evaluate

the effects of extreme observations on estimation,

12 000 observations of each series are used, with

the sample period for each series ending on 7 May

1997. For the evaluation of forecasting perfor-

mance, various measures based on one-period ahead

forecasts over two separate ‘out-of-sample’ periods

are used, each consisting of 250 observations; the

first of these, starting from 8 May 1997 for both

series, includes some significant spikes in the

volatility of daily returns, while the second, ending

on 7 May 1997 for both series, is a period of

relative calm.
4. Empirical results

4.1. Estimation results

In order to evaluate the effects of increasing the

sample size and including extreme observations, the

GARCH(1,1) and GJR(1,1) models are estimated

recursively. In each set of estimates, the end observa-

tion of the sample is fixed at 7 May 1997. For the

S&P 500 series, the sample begins with 200 observa-

tions from 23 July 1996 to 7 May 1997, and is then

expanded backward recursively until it reaches 12 000

observations at 3 January 1950. For Nikkei 225, the

sample expands from the 200 observations over the

period 1 August 1996 to 7 May 1997 to the 12 000

observations over the period 10 May 1951 to 7 May

1997.

Fig. 1A and B show the estimated values of the

ARCH parameter a of the GARCH(1,1) model as the

sample size is increased recursively using the S&P

500 and Nikkei 225 data sets, respectively.2 The

actual volatility of the daily returns is shown in the

lower half of each figure to indicate where the

volatility spikes occur. It is clear that the estimates

of a are highly volatile when the sample sizes are

below 2400. Significant spikes in the actual volatility

correspond to huge variations in the estimates of a:
2 Throughout the rest of the paper, the ‘A’ figures represent

results for S&P 500 and the ‘B’ figures represent results for Nikkei

225.



Fig. 1. (A) a Estimates of GARCH(1,1) S&P 500. (B) a Estimates of GARCH(1,1) Nikkei 225.
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The most obvious feature common to both figures is

the huge shift in the a estimates with the 19 October

1987 spike in volatility, after which the variations in

the a estimates are much smaller in magnitude. Other

notable features are the general U-shape in the

middle of Fig. 1A and the cyclical pattern in Fig.

1B, both of which indicate that a is not constant over

time.

Fig. 2A and B present the asymptotic t-ratios, as

well as the robust t-ratios of Bollerslev and Wool-

dridge (1992), for estimates of a in the GARCH(1,1)

model. The robust t-ratios are designed to be insensi-

tive to departures from normality, especially extreme
Fig. 2. (A) a t-ratios of GARCH(1,1) S&P 500.

Fig. 3. (A) b Estimates of GARCH(1,1) S&P 500.
observations. Both sets of t-ratios in each figure are

somewhat erratic at small sample sizes and are more

sensitive to extreme observations before the inclusion

of the 19 October 1987 spike, but when the sample

size exceeds 400 both t-ratios exceed the critical value

for the null hypothesis that a ¼ 0: The effects of

significant spikes in volatility on the two sets of

t-ratios are also dramatically different. Each spike in

volatility increases the asymptotic t-ratios but de-

creases the robust t-ratios, with the magnitudes of the

shifts being far greater for the asymptotic t-ratios. It

is worth noting the huge increase in the asymptotic

t-ratios when the 19 October 1987 spike is included.
(B) a t-ratios of GARCH(1,1) Nikkei 225.

(B) b Estimates of GARCH(1,1) Nikkei 225.
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In contrast, the impact of this extreme observation on

the robust t-ratios is barely visible.

Estimates of the GARCH parameter b of the

GARCH(1,1) model are given in Fig. 3A and B. These

are virtually mirror images of the estimates of a; with
the b estimates moving in the opposite direction to

those of a: There is also much variability in the b
estimates at sample sizes below 2400. As the sample

size is increased beyond 2400, Fig. 3A shows an

inverted U-shape while Fig. 3B shows a cyclical

pattern. The spikes in volatility also have larger impacts

on the b estimates when the sample size is small.

Fig. 4A and B show the t-ratios for the b estimates

in the GARCH(1,1) model. Both the asymptotic and

robust t-ratios in each of these figures show greater

variability for sample sizes below 2500, prior to the

inclusion of the 19 October 1987 spike in volatility.

After the inclusion of this extreme observation, both

t-ratios become much smoother, especially the robust

t-ratios. Throughout all sample sizes, both t-ratios for

each data set exceed the critical value for the null

hypothesis that b ¼ 0:
The second moment condition for stationarity and

consistency of the GARCH(1,1) model, as discussed
Fig. 4. (A) b t-ratios of GARCH(1,1) S&P 500.

Fig. 5. (A) Second moments for GARCH(1,1) S&P 500.
above, is a þ b < 1: Fig. 5A and B show the value of

the estimated a þ b: Spikes in the volatility of returns

have large impacts on this value when the sample size

is below 2400. For large sample sizes, and with the

inclusion of the 19 October 1987 spike, this value is

less volatile, but it is also not constant. It is significant

to note that the second moment condition is satisfied

for all sample sizes in the backward recursions with

the S&P 500 data, but the same does not hold true

with the Nikkei 225 data.

Since the fourth moment condition for asymptotic

normality is condition (4) when gt is distributed as

Nð0; 1Þ; and condition (5) when gt is distributed as

tð5Þ;Fig. 6A and B show the values of SGðNÞ and SGðtÞ:
As discussed previously, SGðNÞ is smaller and hence is

more likely to be less than unity. Its value in the

recursions follows a pattern that is identical to that of

the second moment condition, and is less than unity

for most of the S&P 500 sample, but is greater than

unity for most of the Nikkei 225 sample. While

following the same pattern in fluctuations, SGðtÞ is

greater in value and exceeds unity for all sample

ranges in both data sets that include the 19 October

1987 volatility spike.
(B) b t-ratios of GARCH(1,1) Nikkei 225.

(B) Second moments for GARCH(1,1) Nikkei 225.



Fig. 6. (A) Fourth moments for GARCH(1,1) S&P 500. (B) Fourth moments for GARCH(1,1) Nikkei 225.

Fig. 7. (A) a Estimates of GJR-GARCH(1,1) S&P 500. (B) a Estimates of GJR-GARCH(1,1) Nikkei 225.
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Fig. 7A and B show the a estimates for the

GJR(1,1) model having severe fluctuations at small

sample sizes, with negative values occurring for

sample sizes below 1400 observations for both S&P

500 and Nikkei 225. As in the GARCH(1,1) model,

the fluctuations are less severe at sample sizes above

2400, after the inclusion of the 19 October 1987

volatility spike. The estimated value of a does not

appear to be constant in this model.

The graphs of the t-ratios for the a estimates of the

GJR(1,1) model in Fig. 8A and B are dramatically

different from those of their GARCH(1,1) counter-

parts. Absent from both Fig. 8A and B are the
Fig. 8. (A) a t-ratios of GJR-GARCH(1,1) S&P 500.
dramatic shifts in the asymptotic t-ratios when the

19 October 1987 volatility spike is included. Instead

the figures show volatility spikes in the distant past

having much larger impacts on the a t-ratios, espe-

cially the asymptotic t-ratios, of the GJR(1,1) model.

Another significant difference is that the t-ratios do

not exceed the critical value for the hypothesis that

a ¼ 0 until the sample size exceeds 2500 for both

S&P 500 and Nikkei 225.

The general pattern of the b estimates of the

GJR(1,1) model shown in Fig. 9A and B are similar

to those of the GARCH(1,1) model. There are large

fluctuations for sample sizes below 2400, but they
(B) a t-ratios of GJR-GARCH(1,1) Nikkei 225.



Fig. 9. (A) b Estimates of GJR-GARCH(1,1) S&P 500. (B) b Estimates of GJR-GARCH(1,1) Nikkei 225.

Fig. 10. (A) b t-ratios of GJR-GARCH(1,1) S&P 500. (B) b t-ratios of GJR-GARCH(1,1) Nikkei 225.
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disappear once the sample size expands beyond the

inclusion of the 19 October 1987 observation. The

persistent variability of the b estimates as the sample

is expanded is also present in each of these two

figures.

In Fig. 10A and B, the graphs of the t-ratios for the

b estimates of the GJR(1,1) model are almost identical

to those of the GARCH(1,1) models in Fig. 4A and B,

except when the sample size is below 1000. Both

t-ratios are volatile for small sample sizes, especially

with the Nikkei 225 data, but are less so when the

samples are expanded beyond the 19 October 1987

extreme observation.
Fig. 11. (A) c Estimates of GJR-GARCH(1,1) S&P 500.
Fig. 11A and B display the asymmetry, or c;
estimates of the GJR(1,1) model. In both cases, large

fluctuations in the estimates of c are observed for

small sample sizes. When the samples exceed 2500

observations, the fluctuations are greatly reduced, but

the estimated values of c continue to change over time.

The graphs of the t-ratios for the c estimates of the

GJR(1,1) model in Fig. 12A and B show volatility

spikes having significantly different impacts on the

two t-ratios. Each extreme observation has a large and

positive impact on the asymptotic t-ratio, but a smaller

and negative impact on its robust counterpart. While

the asymptotic t-ratios always exceed the critical value
(B) c Estimates of GJR-GARCH(1,1) Nikkei 225.



Fig. 12. (A) c t-ratios of GJR-GARCH(1,1) S&P 500. (B) c t-ratios of GJR-GARCH(1,1) Nikkei 225.
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for the null hypothesis that c ¼ 0 when the sample

size exceeds 500, the robust t-ratios do not always

exceed the same critical value.

The results of testing the second moment condition

for the GJR(1,1) model, as shown in Fig. 13A and B,

are very similar to those for the GARCH(1,1) model.

The second moment condition requires a þ b þ c
2
< 1:

Fig. 13A show that the estimate of a þ b þ c
2

for

S&P 500 is volatile for small sample sizes, more

stable for large sample sizes, and does not exceed

unity at any stage. The estimates for Nikkei 225 show
Fig. 13. (A) Second moments for GJR-GARCH(1,1) S&P 500.

Fig. 14. (A) Fourth moments for GJR-GARCH(1,1) S&P 500.
a similar tendency to be volatile for small sample

sizes, but they differ in that the second moment

condition is not always satisfied.

Fig. 14A and B show the values of SGJRðNÞ and

SGJRðtÞ; which are required to be less than unity by

conditions (8) and (9), respectively. With S&P 500,

both SGJRðNÞ and SGJRðtÞ are very volatile for small

sample sizes, but much less volatile for samples with

more than 2500 observations. Moreover, SGJRðNÞ does
not exceed unity for most sample sizes, except for

some sample sizes between 8000 and 9000 observa-
(B) Second moments for GJR-GARCH(1,1) Nikkei 225.

(B) Fourth moments for GJR-GARCH(1,1) Nikkei 225.
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tions, while SGJRðtÞ exceeds unity for all sample sizes

above 2500 observations. With Nikkei 225, there is

also greater volatility in both SGJRðNÞ and SGJRðtÞ when
the sample size is small, and significant increases in

the values of SGJRðNÞ and SGJRðtÞ when there is a large

volatility shock. The values of SGJRðNÞ and SGJRðtÞ;
however, both exceed unity for most sample sizes.

4.2. Forecasting results

In order to evaluate the effects of increasing

sample sizes and including extreme observations on

the forecast performance of the GARCH(1,1) and

GJR(1,1) models, similar backward recursions are
Fig. 15. (A) GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (includ

for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 16. (A) GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (includ

for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 17. (A) GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (includ

for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.
used. For each model, two sets of forecasts are

performed. In the first set of forecasts, the forecast

period is the 250 trading days starting from 8 May

1997, which includes an extreme observation at 27

October 1997. Estimation of the parameters to obtain

these forecasts is in the same manner as the backward

recursions explained above, with sample sizes ranging

from 200 observations to 5000 observations. For each

sample size, 250 one-day ahead forecasts are made,

covering the period 8 May 1997 to 5 May 1998 in the

case of S&P 500, and the period 8 May 1997 to 22

April 1998 in the case of Nikkei 225. The prediction

errors from these 250 forecasts are then combined in

three measures of forecast performance, namely mean
ing October 1997) S&P 500. (B) GARCH(1,1) forecast performance

ing October 1997) S&P 500. (B) GARCH(1,1) forecast performance

ing October 1997) S&P 500. (B) GARCH(1,1) forecast performance
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absolute prediction error (MAPE), mean absolute

percentage prediction error (MAPPE), and root mean

square prediction error (RMSPE).

The forecast performance measures of the

GARCH(1,1) model for the 250 days starting from

8 May 1997 are graphed in Figs. 15A–17B. Not

surprisingly, MAPE and MAPPE show very similar

patterns. They both vary substantially for small

sample sizes and both reach their respective minima

at sample sizes below 2500. The effect of including

the 19 October 1987 extreme observation is to

increase both measures substantially, and then to

stabilise at higher levels. This leads to the important

and useful conclusion that expanding the sample size

for estimation by including an extreme observation

does not necessarily improve the accuracy of pre-

dicting future extreme observations. This conclusion

applies to both the S&P 500 and Nikkei 225 data

sets.

Fig. 17A and B show that RMSPE is also highly

volatile for small sample sizes. Again, the inclusion of

the 19 October 1987 observation spike leads to a

deterioration in forecast performance, especially in the
Fig. 18. (A) GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (includ

for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 19. (A) GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (includ

for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.
case of Nikkei 225. There does, however, seem to be

increased stability in forecast performance after the

volatility spike.

The second set of forecasts is for the 250-trading

day period ending on 7 May 1997, which does not

contain any large spikes in the volatility of returns.

The same backward recursion procedure is used for

estimation, with the samples for estimation recurring

backwards from 2 May 1996. The same three proce-

dures for averaging of one-day ahead forecasts are

also used to obtain the forecast performance measures.

Fig. 18A and B show that MAPE for the

GARCH(1,1) model is relatively stable and reaches

its minimum at a small sample size, namely about 850

for S&P 500, and 350 for Nikkei 225. The inclusion

of the 19 October 1987 extreme observation spike

shifts up both trends and smoothes them, so that the

inclusion of extreme observations in the estimation

period does not necessarily help in prediction for a

relatively calm period.

Fig. 19A and B show that MAPPE reaches its

minimum at the same sample size as the MAPE

measure, but is more volatile, especially at sample
ing October 1997) S&P 500. (B) GARCH(1,1) forecast performance

ing October 1997) S&P 500. (B) GARCH(1,1) forecast performance



Fig. 22. (A) GJR-GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (including October 1997) S&P 500. (B) GJR-GARCH(1,1) forecast

performance for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 21. (A) GJR-GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (including October 1997) S&P 500. (B) GJR-GARCH(1,1) forecast

performance for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 20. (A) GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (including October 1997) S&P 500. (B) GARCH(1,1) forecast performance

for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 23. (A) GJR-GARCH(1,1) forecast performance for 8/5/97 to 5/5/98 (including October 1997) S&P 500. (B) GJR-GARCH(1,1) forecast

performance for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.
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sizes below 1000. Again, the effect of including the

19 October 1987 extreme observation in the estima-

tion sample is to shift the measure up, more so in the

case of Nikkei 225.

Fig. 20A and B for RMSPE show a less consistent

pattern, with RMSPE for S&P 500 and for Nikkei

225 reacting differently to the 19 October 1987

observation spike. With the inclusion of this extreme

observation, RMSPE for S&P 500 stabilises and

commences on a slight but clear downward trend,

while RMSPE for Nikkei 225 shifts up and stabilizes

at a relatively constant level.
Fig. 25. (A) GJR-GARCH(1,1) forecast performance for 8/5/97 to 5/5/98

performance for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 24. (A) GJR-GARCH(1,1) forecast performance for 8/5/97 to 5/5/98

performance for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.

Fig. 26. (A) GJR-GARCH(1,1) forecast performance for 8/5/97 to 5/5/98

performance for 8/5/97 to 5/5/98 (including October 1997) Nikkei 225.
Figs. 21A–23B show the forecast performances

of the GJR(1,1) model for the forecast period

beginning on 8 May 1997. All three measures

achieve their respective minima at very low sample

sizes of around 300 observations. These, however,

are not indicative of the forecast performances over

other small sample ranges. In fact, all three measures

are highly volatile when sample sizes are below

2500 observations. The major impact of including

the 19 October 1987 volatility spike on each of the

three measures is to reduce the fluctuations signifi-

cantly. The other important point to note is that the
(including October 1997) S&P 500. (B) GJR-GARCH(1,1) forecast

(including October 1997) S&P 500. (B) GJR-GARCH(1,1) forecast

(including October 1997) S&P 500. (B) GJR-GARCH(1,1) forecast



3 Comparisons of forecast performance based on sample sizes

of 1000, 2000, 3000, and 4000 are also available, with the results

being qualitatively similar to those reported in Table 1.
4 Explained in Kim and Mina (2001, pp. 8–10).

Table 1

Comparison of forecast performance measures

Sample Forecast Model

measure
GARCH(1,1) GJR(1,1) RiskMetrics

S&P 500 MAPE 0.000139 0.000132 0.001950

8 May 1997 to MAPPE 289 251 3924

5 May 1998 RMSPE 0.000379 0.000375 0.001959

S&P 500 MAPE 0.000068 0.000068 0.001938

3 May 1996 to MAPPE 11 879 11 598 335 336

7 May 1997 RMSPE 0.000113 0.000113 0.001941

Nikkei 225 MAPE 0.000318 0.000321 0.002181

8 May 1997 to MAPPE 467 692 533 934 2 912 579

22 April 1998 RMSPE 0.000587 0.000589 0.002215

Nikkei 225 MAPE 0.000172 0.000170 0.002179

23 May 1996 to MAPPE 40 485 48 686 834 564

7 May 1997 RMSPE 0.000275 0.000268 0.002197

Each model uses 5000 observations to obtain 250 one-day ahead forecasts covering the periods indicated. The prediction errors from these 250

forecasts are combined to form three measures of forecast performance, namely mean absolute prediction error (MAPE), mean absolute

percentage prediction error (MAPPE), and root mean square prediction error (RMSPE).
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forecast performance measures stabilise at higher

levels when the sample sizes increase beyond 2500

observations.

The forecast performances of the GJR(1,1) model

for the relatively calm forecast period ending on 7

May 1997, as shown in Figs. 24A–26B, are also

highly volatile for small sample sizes. The three

measures for S&P 500 exhibit significantly different

trends as sample sizes are increased. In Figs. 24A and

25A, MAPE and MAPPE both reach their respective

minima at around 1000 observations, while RMSPE

in Fig. 26A follows a general downward trend. The

performance measures for Nikkei 225, however, are

closer to each other.

While the 19 October 1987 volatility spike reduces

the fluctuations of all three measures, it affects the

trends differently. The inclusion of this extreme ob-

servation shifts up MAPE for both S&P 500 and

Nikkei 225, as well as MAPPE for Nikkei 225, but

not the other measures.

Comparing each forecasting performance graph for

the GARCH(1,1) model in Figs. 15A–20B against the

corresponding graph for the GJR(1,1) model in Figs.

21A–26B, it is not straightforward to determine which

model is superior. In order to examine the results more

closely, forecast performance measures for 250 one-

day ahead forecasts, based on a fixed sample size of
5000, are given in Table 1.3 Moreover, the RiskMetrics

procedure4 is used to calculate the corresponding

forecast performance measures over the same period

to serve as a benchmark.

The much smaller values in the GARCH(1,1) and

GJR(1,1) columns in Table 1, as compared with the

corresponding values in the RiskMetrics column,

indicate that the GARCH(1,1) and GJR(1,1) models

perform much better than the RiskMetrics benchmark.

Comparing GARCH(1,1) against GJR(1,1), the two

models perform equally well, with neither model

being consistently better than the other. The

GJR(1,1) model generally appears to perform better

with the S&P 500 data, whereas the GARCH(1,1)

model is better in some cases with Nikkei 225.
5. Concluding remarks

This paper has investigated the effects of increasing

sample sizes recursively, both with and without the

inclusion of extreme observations, on the parameter

estimates, t-tests, moment conditions and forecasts of
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the GARCH(1,1) andGJR(1,1) models, using S&P 500

and Nikkei 225 data. The results indicate that for these

sets of data, the ARCH and GARCH parameter esti-

mates, their asymptotic and robust t-ratios, the second

and fourth moment regularity conditions, and various

forecast performance measures for both models, are all

highly volatile for small sample sizes. However, when

an extreme observation is included in the estimation

period for sample sizes above 2000, all the sample

estimates and their associated statistics seem to stabi-

lise. An important implication of these results is that

increasing the sample sizes recursively beyond the

extreme observation is unnecessary.

Another important result is that the robust t-ratios

are dramatically superior to the asymptotic t-ratios,

especially in the presence of high volatility in the

returns. The second moment condition for stationarity

is always satisfied for both the GARCH(1,1) and

GJR(1,1) models in the case of S&P 500, but not so

in the case of Nikkei 225. Similar results hold for the

fourth moment condition for asymptotic normality

under the assumption of normality of the conditional

errors. For S&P 500, this condition is generally satis-

fied for both models, but for Nikkei 225, the same

condition is usually violated. If it is assumed that the

conditional error follows a fatter-tailed distribution

such as tð5Þ; then the fourth moment condition is

generally not satisfied for both models and both data

sets when an extreme observation such as 19 October

1987 is included, regardless of the sample sizes used.

For most measures of forecasting performance, the

inclusion of an extreme observation in the sample

used for estimation leads to a marked deterioration in

forecasting performance of both models, especially if

the forecasting period is volatile. Increasing the sam-

ple sizes recursively does not necessarily improve the

forecasting performance of either model. Both the

GARCH(1,1) and GJR(1,1) models show superior

forecasting performance to the RiskMetrics model.

In choosing between the two models, however, supe-

riority in forecasting performance depends on the data

set used.
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